Analysis of microbial activity under a supercritical CO₂ atmosphere

Project Number DE-FE0002128

Janelle R. Thompson Civil and Environmental Engineering

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage August 21-23, 2012

Acknowledgements

<u>Thompson Laboratory:</u> Hector Hernandez (postdoc) Kyle Peet (PhD student) Adam Freedman (PhD student)

Collaborators:

Dr. Mike Timko, Chemical Engineering, MIT Dr. Tommy Phelps, Oak Ridge National Lab, TN Prof. Susan Pfiffner, U. Tennessee Prof. Roger Summons, MIT

<u>Funding:</u> MIT Energy Initiative DOE National Energy Technologies Laboratory

http://thompsonlab.mit.edu

Overview of Geological Storage Options

- 1 Depleted oil and gas reservoirs
- 2 Use of CO, in enhanced oil and gas recovery
- 3 Deep saline formations ---- (a) offshore (b) onshore
- 4 Use of CO₂ in enhanced coal bed methane recovery
- 5 Deep unmineable coal seams

1km

2km

3a

6 Other suggested options (basalts, oil shales, cavities)

3

Do Microbes Matter?

Near-field?Far-field?

1. Microbes are potentially important catalysts of geochemical reactions during GCS.

Abiotic control

Results demonstrating microbiallyenhanced dissolution of Si, Fe from Biotite with concomitant acidification

Barker, W.W. et al. (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering American Mineralogist, Volume 83, pages 1551 – 1563.

2. Supercritical CO₂ is a powerful sterilizing agent

Proc. Natl. Acad. Sci. USA Vol. 96, pp. 10344–10348, August 1999 Medical Sciences

Bacterial inactivation by using near- and supercritical carbon dioxide

ANGELA K. DILLOW*, FARIBA DEHGHANI[†], JEFFREY S. HRKACH[‡][§], NEIL R. FOSTER[†], AND ROBERT LANGER[‡][¶]

"...a useful method for sterilization of many types of materials and pharmaceutical formulations because of the mild, non-reactive process conditions employed and the ability of SCF CO₂ to inactivate a wide variety of microorganisms."

E. coli sterilization after 20-40 mins

2. Supercritical CO₂ is a powerful sterilizing agent

CO₂ exposure associated with 3 to 7 log fold reduction of viable cells

Viable cell counts (colony forming units/ml) for type strains incubated under 1 atm CO_2 and $scCO_2$ of *B.* subtilis PY-79, *B. mojavensis* JF-2 and *B. cereus* ATCC 14579 and normalized to initial values. Mean fold change in CFU cell counts of cultures grown for 6 hours (light gray) or 7 days (dark gray) under ambient conditions, atmospheric, CO_2 of 1 atm and CO_2 of 120 atm. Error bars are 1 standard deviation.

Project overview:

Do microbes matter?

Geologic sequestration of CO_2 , if implemented at scales that could mitigate climate change, will result in massive perturbations to the biologically-active subsurface environment.

Questions

- 1. Will subsurface microbial communities remain active under the high pCO₂ conditions associated with geological carbon sequestration?
- 2. What are the biological mechanisms of high pCO_2 tolerance?
- 3. What is their significance for the fate and transport of injected CO_2 ?
- 4. Can we engineer microbial systems to help improve reservoir seal integrity?

Presentation Outline

- Project Benefits & Goals
- Results/Technical Status
 - Enrichment and isolation of CO₂ tolerant microorganisms from sequestration sites.
 - Microbial diversity in scCO₂ enrichments
 - Physiological and Genomic Characterization of strain MIT0214
 - Analysis of gene expression (transcriptomics) (in progress)
- Accomplishments
- Future Work
- Appendix

Benefits to the Program

Program goals

- Design technologies that will support industries' ability to predict CO₂ storage capacity in geologic formations
- Develop technologies to demonstrate that 99 percent of injected CO₂ remains in the injection zones.

Project benefits

- Microorganisms that tolerate sub- and super-critical CO₂ hold potential as agents of biological transformations in the deep subsurface after CO₂ injection.
- A fundamental understanding of microbial activity under supercritical CO₂, including potential for geochemical catalysis, is necessary for modeling the long term fate of injected CO₂.

CO₂-induced subsurface geochemical changes during Frio 2

Observation Well	Pre-CO ₂	Post-CO ₂
рН	5.9-6.7	2 to 3
methane	93% (g)	ND
CO ₂	0.03% (g)	~100%
alkalinity	100 mg/L	3000 mg/L
Fe _T	30 mg/L	1100 mg/L
Cations		increase
(Mg, Ca)		
Dissolved organic	1-5 mg/L	Day 1: 5-6 mg/L
carbon		Day 20: >500 mg/L
		Month 6: 4.5-7.5 mg/L
(organic acids, toluene)		

Hovorka et al. (2006) Measuring permanence of CO_2 storage in saline formations: the Frio experiment. Environ. Geoscience 13(2);105-121

Enrichment of strains from Frio 2 formation water filters

Filters courtesy of Tommy Phelps, ORNL

Incubation time = 14 days

Initial enrichment

 $scCO_2$ column at 120-136 atm 6 ml culture; 4 cm³ headspace

DAPI Scale bar 10µm

Peet, et al, in prep

Enrichment

Enrichment and isolation of supercritical CO₂-tolerant microbes

Serial passage 15% v/v Incubation time = 16 days

scCO₂ columns at 120-136 atm

Invitrogen Live/Dead Stain Scale bar 10 µm

Serial passages

Incubation time = 9 to 16 days and 60 days

Isolation of Bacillus MIT0214

Passage	Duration	Amount of previous enrichment used as inoculums	Nucleic acid yield	Community Analysis
Passage	Duration	ennenment used as inoculums	(ng/mL)	Analysis
Initial enrichment	14 days	15 % dilution of previous	700	+
1	16 days	15 % dilution of previous	1400	+
2	15 days	10 % dilution of previous		
3	15 days	10 % dilution of previous		
4	60 days	10 % dilution of previous		
5	15 days	10 % dilution of previous		
6	12 days	10 % dilution of previous		
7	9 days	10 % dilution of previous	2300	+
8	9 days	10 % dilution of previous		
9	9 days	10 % dilution of previous	1770	+

By 7th passage spores appear in aggregates

Top: Heat-fixed; stained with malachite green Bottom: TEM of spore

Characterization of Diversity

Alignment of 16S/18S rRNA

	CONSERVED	VARIABLE	
	TAATTCCAGCTC GTAATTCCAGCT GCAAGCGTTAAT	CAATAGCG <mark>TA</mark> TAAAGTTG CCAATAGCGTATATTTAAGTTG CGGAATTAC <mark>TGG</mark> GCGTAAAGG	ITGCAGTTAAAAAG ITTGCAGTTAAAAAG G
GTGCCAGCAGCCGCGGTAATACGTAGGGGG Methanococcus vannielii GTGCCAGCAGCCGCGGGTAATACCGACGGCC Thermococcus celer GTGGCAGCCGCCGCGGGTAATACCGGCGGCG Sulfolobus sulfotaricusGTGTCAGCCGCCGC	CGAGTGGTAGC		G G.Archaea GATACTGGGCCTAAAGCG
			Eucarya

Microbial Diversity in Enrichments

Examine MIT0214 tolerance to CO₂ in relation to closely related strains

Physiological Characterization

Examine MIT0214 growth under CO₂ (work in progress)

Physiological Characterization

MIT0214 Growth and sporulation vs headspace

Physiological Characterization

20

Physiological Characterization

- MIT0214 isolated from Frio Enrichment Culture.
- Spores tolerate supercritical CO₂
- Growth occurs under 100% CO₂ at ambient and elevated pressures (up to 10 atm confirmed).
- pH tolerance to 5.5
- Observation of *Bacillus*-like lipid profiles in Frio site (Tommy Phelps and Susan Pfiffner pers. Comm.)

What adaptations allow the strain to grow under CO_2 ?

Genome Sequencing

- Illumina "next-generation" sequencing technology
- MIT MicroBioCenter core facility
- Illumina GAII machine
- 100 bp paired end reads
- Assembled into contigs 50kb to 250kb using CLC Genomics Workbench.
- Annotated using MG-RAST

Genome annotation

Highlights – genes for aerobic and anaerobic respiration; catabolism of proteins, sugars and aromatic compounds; antibiotic resistance.

Genomic Characterization

Comparative genomic analysis of MIT0214

		B. cereus Q1	<i>B. anthracis</i> Ames	B. cereus ATCC 14579	B. cereus ATCC 10987
GC content (%)	34.9%	35.5%	35.4%	35.3%	35.5%
No. of plasmids (size)	TBD	2 (53kb & 239kb)	2 (95kb & 182kb)	1 (15kb)	1 (208kb)
Genome size (Mb)	5.62 Mb	5.51 Mb	5.23 Mb	5.43 Mb	5.43 Mb
No. of Coding Sequences	5640	5646	5667	5561	5924
Genes shared with MIT0214	-	5032 (89.2%)	5001 (88.7%)	5086 (90.2%)	5034 (89.3%)
Average Nucleotide Identity with MIT0214	-	93.6%	93.2%	97.9%	93.3%

Genomic Characterization

This study Oil field (China) Comparison of the percent of total SEED subsystems of both MIT0214 and *B. cereus* Q1 reveals enrichment of three subsystem that show more than 2 standard deviations from the mean of 6 surface strains. These may represent important functions for adaptation to the subsurface

6 Surface isolates % (Std. Dev.)	MIT0214 %	Q1 %	SEED Level 1 Subsystems
7.59 (0.32)	5.89	6.27	Cofactors, Vitamins, Prosthetic Groups, Pigments
4.52 (0.43)	5.86	5.68	Cell Wall and Capsule
0.972 (0.09)	0.47	0.48	Potassium metabolism
9.67 (0.45)	7.38	8.35	Miscellaneous
5.99 (0.11)	4.51	3.66	RNA Metabolism
3.34 (0.14)	3.93	3.86	Stress Response
0.397 (0.047)	0.56	0.51	Metabolism of Aromatic Compounds

- 1. cell wall and capsule,
- 2. stress response and
- 3. metabolism of aromatic compounds.

- Genes unique to MIT0214 are indicated in red while yellow indicates the gene is shared with another closely related *Bacillus* strain.
- A) Contig 28 annotates as CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) genes, indicating MIT0214 may have been challenged with phage recently in its history.
- **B)** Contig 49 reveals several unique Choline binding proteins, a protein involved in cell adhesion and hydrophobicity of the cell surface⁴. GC content is 5% lower than the genome average suggesting acquisition of these genes via HGT.
- **C)** Contig 284 contains unique hypothetical proteins and a pXO1 protein, possibly indicating novel gene content transferred through plasmid vectors to MIT0214.

Genomic Characterization

Accomplishments to Date

- High pressure cultivation system constructed
- Enrichment and Isolation of scCO₂-tolerant bacteria from 3 sites.
- Established bioinformatics pipeline for comparative genomics analysis
- Sequencing and analysis of MIT0214 genome
- Sequencing of MITOT1 genome (in progress)
- Funded training of 4 undergraduates (including 2 women and 3 URM) and 1 full-time PhD student.
- Launched AGU session: Microbiology of Geologic Carbon Sequestration

Work in Progress

- Cultivation of scCO₂ tolerant organisms
 - WestCARB core (started 4/4); 1599 m depth
 - Otway Basin Australia
 - McElmo Dome formation waters
- Analysis of gene expression under N₂ and CO₂ to identify genes up-regulated under CO₂ that mediate acclimation to high pCO₂.

Will microbial processes influence storage of CO₂?

Geologic sequestration of CO_2 , if implemented at scales that could mitigate climate change, will result in massive perturbations to the biologically-active subsurface environment.

Questions

1. Will subsurface microbial communities remain active under the high pCO₂ conditions associated with geological carbon sequestration?

EVIDENCE THAT MICROBES CAN SURVIVE (GROW!) UNDER scCO₂ CONDITIONS

Will microbial processes influence storage of CO₂?

Geologic sequestration of CO_2 , if implemented at scales that could mitigate climate change, will result in massive perturbations to the biologically-active subsurface environment.

Questions

- 1. Will subsurface microbial communities remain active under the high pCO₂ conditions associated with geological carbon sequestration?
- 2. What are the biological mechanisms of high pCO₂ tolerance?

Future insights via "-OMIC's"

Do microbes matter? --Yes! Near and Far field

Geologic sequestration of CO_2 , if implemented at scales that could mitigate climate change, will result in massive perturbations to the biologically-active subsurface environment.

Questions

- 1. Will subsurface microbial communities remain active under the high pCO₂ conditions associated with geological carbon sequestration?
- 2. What are the biological mechanisms of high pCO_2 tolerance?
- 3. What is their significance for the fate and transport of injected CO_2 ?
- 4. Can we engineer microbial systems to help improve reservoir seal integrity?

Appendix

These slides will not be discussed during the presentation, but are mandatory

Organization Chart

Gantt Chart

Task/Sub7	Task		Project Year 1		Project Year 2				Project Year 3					
		·09	(20)	10)			(20	11)			(20)	12)		
		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 2: Ch	naracterization of microbial diversity in con-	sortit	um N	1IT0	212		_							
Task 2.1	Describe 16 rRNA gene diversity	-	х	Α										
Task 2.2	Microscopy of scCO2-bioreactor biomass.	-	х	Α										
Task 2.3	Isolation and identification of pure cultures.	-	х	х	х	С								
Task 3: Ch	naracterize the growth requirements and opt	ima (of the	e sup	ercri	itical	CO	2-tol	erant	con	sorti	um a	nd	
isolated str	rains		_				_				_			
Task 3.1	Quantify growth under different environments	-	х	х	х	х	х	х	x	E				
Task 5: Inv	vestigate the mechanisms of supercritical C	02 to	lera	nce i	n iso	lated	i stra	ins a	nd ti	he co	nsor	tium	<u> </u>	
MIT0212	through genome-enabled and metagenomic	stud	ies											
	Prepare total nucleic acids and sequence the (m		х	х	В	х	х	х	х	х	х	х	Х	Н
	Comparative genomic analysis of scCO2-atmos		-			х	х	х	x	X	х	х	Х	Η
Task 5.3	Transcriptome profiling of the MIT0212 isolate	-	-				D	х	x	х	х	х	х	G, I
Note: Task	4 (Seeding sandstone cores) was dropped t	from	the s	grant	due	to ti	me/p	erso	nnel	cons	train	ts an	d	
budgeted time was re-allocated to bioinformatic analysis of microbial genomes														

Bibliography

- Manuscripts are currently in preparation.
- Peet KC, Freedman A, Hernandez HH, Thompson JR. 2011. Genomic insights into growth and survival of supercritical-CO2 tolerant bacterium MIT0214 under conditions associated with geologic carbon dioxide sequestration. American Geophysical Union Fall Meeting: San Francisco.